Regression Models with Memory for the Linear Response of Turbulent Dynamical Systems

نویسندگان

  • EMILY L. KANG
  • JOHN HARLIM
  • ANDREW J. MAJDA
چکیده

Calculating the statistical linear response of turbulent dynamical systems to the change in external forcing is a problem of wide contemporary interest. Here the authors apply linear regression models with memory, AR(p) models, to approximate this statistical linear response by directly fitting the autocorrelations of the underlying turbulent dynamical system without further computational experiments. For highly nontrivial energy conserving turbulent dynamical systems like the Kruskal-Zabusky (KZ) or Truncated Burgers-Hopf (TBH) models, these AR(p) models exactly recover the mean linear statistical response to the change in external forcing at all response times with negligible errors. For a forced turbulent dynamical system like the Lorenz-96 (L-96) model, these approximations have improved skill comparable to the mean response with the quasi-Gaussian approximation for weakly chaotic turbulent dynamical systems. These AR(p) models also give new insight into the memory depth of the mean linear response operator for turbulent dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power

The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...

متن کامل

Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions th...

متن کامل

کاربرد مدل های k-? خطی و غیر خطی در پیش بینی جریان و انتقال حرارت جا به جائی در کانال های با موانع منفصل

Roughness elements or turbulence promoters have been widely used to enhance heat transfer in cooling passages of modern gas turbine blades. Although such ribs substantially enhance heat transfer, the heat transfer coefficient is reduced immediately at corner downstream of each rib, creating hot spots. To remove such hot spots some of the ribs can be detached from the channel walls. In this pape...

متن کامل

Improving Prediction Skill of Imperfect Turbulent Models Through Statistical Response and Information Theory

Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models due to both the lack of physical understanding and the overwhel...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011